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Inclusion of fermionic degrees of freedom in the lattice 
dynamics shell model 
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Avenida Pellegrini 250, 2000 Rosario, Argentina 

Received I January 1990, in final form 23 April 1991 

Abdraet. We present a model which allows us to describe not only the interaction of 
electrons with rigid ions, but also the interaction between electrons and the defamation 
of the electronic clouds of the ions due to atomic displacements. To this purpose the Usual 
shell model is extended by incorporating a finite set of fermionic coordinates (Grasrmann 
variables), which represent the fermionic degrees of freedom. The pseudomechanics and 
the quantum statistical mechanics of the model are studied. The perturbative formalism 
for a general interacting potential and the Feynman rules are given. This penurbative 
method is useful to evaluate several physical properties in solid state physics at finite 
temperature. 

1. Introduction 

The Frohlichs Hamiltonian (e.g. see [ 11) is frequently used to treat the electron-phonon 
interaction. In this model the electrons interact with rigid ions vibrating around their 
equilibrium positions. Effects of the electronic polarizability of ions can be taken into 
account at most by introducing the high-frequency dielectric constant in the electron- 
phonon coupling constant. If the electronic shells of the ions are deformed by the 
vibration of ionic cores, additional interactions between these deformations and other 
electrons arise. Recently, some authors have considered this problem [2]. In lattice 
dynamics, a model which takes into account effects of ionic polarizabilities is the 
well known shell model [3]. The electronic polarizability effects have been incorporated 
in the shell model by means of massless charge shells with empirical potentials between 
shells and between cores and shells. Thus, the description of these electronic effects 
through the shell model is quite different to the Born-van Karman approach, where 
the electrons are considered only implicitly in the adiabatic potential [4]. 

In a recent paper [5] we have obtained the quantum partition function of a general 
anharmonic shell model by using the Dirac theory of constrained Hamiltonian systems 
[6]. The shell model constitutes a constrained Hamiltonian system in which all the 
constraints are of second class. Therefore the path integral formalism developed by 
Senjanovic [7] was used to construct the quantum partition function. Starting from 
this quantum partition function, an anharmonic perturbation theory was developed 
[E]. This perturbative formalism allowed us to compute the phonon response function 
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and thermodynamic properties of solids described by an anharmonic shell model. The 
previous formalism treats the electronic shells as bosonic degrees of freedom. 

On the other hand, if additional electrons are to be considered as fermionic degrees 
of freedom, it is well known that these can be treated at a classical level by introducing 
Grassmann variables. The classical treatment of Bose-Fermi dynamical systems is 
known as pseudomechanics [9,10]. 

In this paper a model is presented which takes into account not only the electron 
interactions with rigid ions, but also the interactions between electrons and the elec- 
tronic deformability of ions. These types of electronic effects cannot be described by 
using only shell coordinates; therefore, we generalize the shell model to an extended 
one. The generalization is performed by considering a finite set of fermionic coordinates 
(Grassmann variables). Thus, our extended shell model (ESM), in addition to the usual 
bosonic coordinates of shells and cores, also has fermionic dynamical variables. 

As the shell model is a constrained Hamiltonian system, the electronic degrees of 
freedom cannot be treated at a quantum level in a simple way as in the Frohlich model. 
Therefore, first we must study the ESM in the framework of Hamiltonian constrained 
systems before carrying out the quantization. 

The paper is organized as follows. In section 2,  the model is presented and we 
analyse it in the framework of constrained Hamiltonian systems. In section 3, the 
quantization of the model via Dirac brackets is considered and also the quantum path 
integral method is applied. In  section 4 a perturbative theory for the model is construc- 
ted. In section 5 ,  we find the connection between our model and that of the Frohlich 
formalism for the electron-phonon interaction. Also, we point out that in the general 
case the two models provide very different information. In section 6 ,  some possible 
applications of the ESM are briefly summarized. Finally, in section 7 the conclusions 
are given. 

A Greco and 0 Zandron 

2. The ESM: constraints and first-class Hamiltonian 

The shell model frequently used in the lattice dynamics of ionic crystals is described 
by the following Lagrangian: 

L(u, U, U )  = $ i i M + i - @ ( u ,  U) (2.1) 

where U and U denote the cores and shells displacements, respectively. The Cartesian 
components, cell and ionic site are summarized in the indices i, j ,  . . . The quantities 
Mv are the matrix elements of the mass matrix and @(U, U )  is a general interacting 
potential. We will use the convention of summation over repeated indices. 

The Euler-Lagrange equations obtained from equation (2.1) are 

( 2 . 2 a )  

_- - 0  ( 2 . 2 6 )  a@ 
aUi 

where equation ( 2 . 2 b )  is the so-called adiabatic condition. 

is nonlinear in the u-variable, U = u ( u )  cannot be explicitly known. 
Equation ( 2 . 2 6 )  defines an implicit functional relation U = u ( u ) .  When this relation 
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As mentioned above, our purpose is to take into account not only the interaction 
between electrons and rigid ions, but also the interaction between electrons and the 
deformation of the electronic clouds due to atomic displacements. Therefore, we extend 
the shell model by introducing classically the fermionic degrees of freedom by means 
of a finite set of complex Grassmannian coordinates f" [ l l ] .  Thus, we start from the 
following Lagrangian: 

I 
" - 2 " " p  I - ? . : , n n . : ~ + _ ~ c + i . _ i + c . \ _ m i  2's"5 s o 5  J - - T % I 4 s , 5  c c+> I (2.3) 

where the complex Grassmann coordinates 6" and f :  verify the anticommutation 
relations 

(2.4) 

The index a is a generic one and can represent, for example, site, orbital or 
momentum, according to the representation used. This index can also carry information 
about the spin of the electrons. 

The Grassmann variables allow us t o  describe electronic effects, such as the 
conductivity, which are not taken into account by means of shell displacements U. 
Thus, the second term on the right-hand side of equation (2.3) corresponds to the 
kinetic terms in the fermionic variables [lo]. The general potential of interaction 
@(U, U, f, f + )  will depend on the bosonic variables U' and U,, and on the fermionic 
variables f" and 5:. 

Before giving the quantum description of the model, we analyse it in the framework 
of constrained Hamiltonian systems. 

First, we consider the canonical momenta corresponding to the bosonic variables 
vi and the fermionic variables f" and f: given by 

{f", f P }  = E, fp'} = ( f : ,  f P }  = 0. 

These momenta define the following primary constraints: 
, p = p  ;.o 

"i 

(2.10) 
I 

+e In- +- I= =o. 
2 

In equations (2.6) and (2.7) we use the right-hand derivatives when the derivation 
is performed with respect to the Grassmann variables [ I l l .  The symbol ;. is used to 
indicate a weakly zero equation [6]. 

After some algebraic manipulations, the canonical Hamiltonian is written as 

H,,.=fP,'(M-')aP",+~(~, U, f ,  6'). (2.11) 
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The Hamiltonian (2.11) is not univocally determined; therefore, we must define 
the following bosonic quantity as the total Hamiltonian: 

H ~ =  H , , , + + ' B ~ + F ~ + ~ = + $ : F ~ = .  (2.12) 

The set B; are bosonic Lagrange multipliers and the sets F'" and F2" are fermionic 

The consistency conditions of the formalism require the preservation in time of the 
Lagrange multipliers. 

constraints (2.8)-(2.10). This leads to the equations 

. .  J@ 

J U, 
+'={+', HTlpe= --=O (2.13) 

We have used the symbol { , IPR to indicate the graded Poisson brackets which were 

Equations (2.14) and (2.15) univocally determine the fermionic multipliers F!,+ 
defined in [9]. 

and F2": 

while equation (2.13) defines the secondary constraints: 

(2.16a) 

(2.16b) 

(2.17) 

Moreover, from equation (2.16) we can see that F'" = F2" = F". 
Requiring the preservation in time of the secondary constraints (2.17) we find 

i j =  {xj, - T J ~ ( M - ~ ) ' X ~ , .  -&sV - p p  - U ~ F "  = o  (2.18) 

where we have defined the following matrix elements: 

(2.19a) 

(2.196) 

( 2 . 1 9 ~ )  

Equation (2.18) univocally defines the bosonic Lagrange multipliers Bk which are 
given by 

Bx = - ( S " ) ~ , ( M - ' ) " ~ ' P ~ ~  - (S- ' ) ,U: 'F" - ( S I ) &  U"' (2.20) 

where F" and Ft are given in equations (2.16) 
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Finally, the total Hamiltonian IfT, which is a first-class dynamical quantity, becomes 

HT = ~? 'u , (&! - l )J 'pu~  +@(U, U, e,[+) - ( s ~ ' ) ~ , ( ~ ~ ' ) ' ' ~ , ' P ~ ~ ~ " ~  + i(S-')& U"'p,  

-i(S-')&'F-P,-iF+ IY+-% + i  II:+-f: F". (2.21) 3 
The constraints given by equations (2.8)-(2.10) and (2.17) are second-class ones. 

In this sense, the dynamical system under consideration differs from the quantum 
electrodynamics formalism in which there are first- and second-class constraints [ 121. 

The next step is to compute the graded Dirac brackets. The graded Dirac brackets 
{,I* between two quantities 0, and are obtained by means of the definition 

021*={01, 0 2 1 ~ ~ - { 0 1 . ~ ~ l ~ ~ A " ( ~ b ,  0 2 1 ~ ~ .  (2.22) 

In equation (2.22) all the possible second-class constraints are given as the 
components of the following vector: 

(2.23) 

The supermatrix A is the inverse of the supermatrix constructed with the elements 

&IPS= Soc. (2.24) 
{A, +blPB, i.e. 

The matrix A-' is given by 

0 -U-' 
- ( A  B )  (2.25) 

0 U" 0 -is", C D ' 

0 U? -is", 0 O i  0 s g  0 
-SY 

A-' = i 
\ 

The name 'supermatrix' is applied to a matrix containing bosonic and fermionic 
elements. To work with these supermatrices we follow the supermatrix algebra given 
in [13]. Computing the supermatrix A it can be written as 

A = (A' "') 
C' D' 

(2.26) 

whose Bose-Bose parts A' and Fermi-Fermi parts D'are even elements of a Grassmann 
algebra and whose Bose-Fermi parts B' and Fermi-Bose parts C' are odd elements. 
The explicit expressions for these four matrices are: 

(2.29) 

(2.30) 
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The time evolution of all relevant physical quantities and the equations of motion 
are written in terms of Dirac brackets. The equations of motion are valid for both 
Dirac and Poisson brackets because HT defined in equation (2.21) is a first-class 
dynamical quantity. 

3. Quantization 

Let us begin by using the canonical method in the quantization procedure of the ESM. 

The second-class constraints may be eliminated by means of the graded Dirac brackets. 
Consequently, we must take the commutations relations corresponding to the graded 
Dirac brackets (2.22) and consider the second-class constraints as strong equations 
between operators. From equation (2.22) and after some algebraic manipulation we find 

{tm, $]* = -is", (3 .1)  
[u ' ,P,j]*=S; 

[Vi.  P",l* = 0 

[Ui, [=]*=[U;, 5']*=0 

[vi, ["]*=i(s-l)jkU"k 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

[U,, ["I* =i(s-')jkU;k. (3.6) 

Subsequently, by defining the graded commutation relation between two operators 
6, and 6,, 

we find 

(3.8) 

(3.9) 

(3.10) 

(3 .11)  

(3.12) 

[ I?, ,  &I = -h(S-l) ,*U+'.  (3.13) 

From equation (3.8) we see that the operators &' and i: verify a Clifford algebra. 
This equation corresponds to the anticommutation relation between creation and 
annihilation operators of electrons. Subsequently, when we take the second-class 
constraints (2.8)-(2.10) as strongly equal to zero, the total Hamiltonian is written 

fi ~ - ~ B ~ , ( ~ - ' ) , J ~ " l + ~ ( i i ,  -~ I?, t, P ) .  (3.14) 

Thus, the quantum formalism of our model remains defined by the Hamiltonian 
operator (3.14), the graded commutation relations (3.8)-(3.13) and the secondary 
constraints (2.17), taking these last constraints as strongly equal to zero quantities. The 
commutation relation (3.10) clearly shows that the variable U is not a true dynamical 
variable. 

I 
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Moreover, we note that the non-trivial commutation relations (3.12) and (3.13) can 
be obtained only by means of the Dirac formalism. 

An alternative quantization method is the path integral one. It is a powerful method 
which allows us to extend the results to quantum statistical mechanics and to construct 
the perturbative method for the ESM. 

As already mentioned in the introduction, we will use the path integral formalism 
developed by Senjanovich [7] because the system under consideration has second-class 
constraints. The probability amplitude for the system initially at luo, uo, to, 6:) and in 
state )U, U, 5, g+) at time 7' can be written as 

(U. U,& 6'1u0, Do, C O , &  

= 9uaP,au9P,9gf9nta#aII(sdet A-')"2 

x exp (i jOr ( U  'P,, + ujP,i - II'P + i:IIm - HT) dt  . (3.15) 

In equation (3.15) (sdet A-') is the superdeterminant of A-' [I31 and is equal to 

(3.16) 

1 
(sdet A-') = (det A) detC'(D- CA-'B) 

therefore 

(sdet A-1)"2=i(det S). (3.17) 

Using this last result, and integrating in the P., Po, II and IIt momenta, the 
probabiiiiy ampiiiude is given by 

(U, U,& #+I%. vo. t o 3  5 3  

= i 1 9 u 9 u 9 @ f  det S S ( X )  

From equation (3.18) it can be seen that the path integral in the Grassmann variables 
has the same expression as that obtained for a fermionic system in the hoiomorphic 
representation [ 141. 

4. Perturbative method and Feynman rules 

In this section we give a perturbative method which allows us to obtain the Green 
functions of the ESM. Our starting point is the expression (3.18). 

The quantum partition function is obtained from equation (3.18) by integrating 
uvei a;; i'ne perio;ic paib,s in the :osoiiic vaiia:les, a:: ani$erio&,c iiaihs in 
the fermionic ones and making the change of variable i f  = T [15]. Thus we have 

1 
Z = 9 1 1 9 u 9 @ ~ + 9 ~ & + 9 A  exp( -- S'(u, u, A, &5+, v + ) )  (4.1) I fi 
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and the Euclidean action SE is given by 

P* 

&(U, U, 5,C’) = ( 0 dT[f((ti“ - i;5”)+fU’bf,UJ+@(U, U, 5, [‘)I. (4.3) 

In equation (4.3) g =  dt /dT and U = du/dT. 
To arrive at expression (4.1) we have used the &function integral representation 

The general interacting potential @(U, U, 5,5’) must be understood as the following 
and det S was written as a path integral over Grassmann numbers 7. 

expansion in the 5 and 5’ Grassmann variables: 

( 0 )  
@ ( u , u , ~ , ~ + ) = @ ( u , u ) + ~ + @  p(~,u)5p+higher-order  terms in  5’5. (4.4) 

Since the potentials @(U, U )  and rP a(u, U) will be, in general, polynomials in 
the U ’  and U, variables the last term on  the right-hand side of equation (4.2) will also 
be a polynomial in the U, U, A, 5, t’, 7 and 

(01 ( I ) =  

variables. 
Analogously to [SI, we can define the quantity 

X(i)= U; (:) (4.5) 

Expression (4.2) can be written in terms of the quantity X ( i )  and therefore the 
action S’ contains terms of the form 

C ( a ,  P, , , , , Y ) t l t B .  . . (4.8) 

(4.9) D(h,p, a, P, . . . , r)nl~,5;5”. . 
E, ,  ”... Ji,j,. . . , k, a, 0,. . . , y ) X * ( i ) X ” ( j ) .  . . Xp(k ) .$ : fP . .  . (4.10) 

F+u,.,o(i,j,. . . , k, h,p, a.&. . . , y ) X + ( i ) X ’ ( j ) .  . . X”(k)v~v,,StS”. . . (4.11) 

The convention of summation on repeated indices for both Greek and italic 
characters is used. The Greek superscripts p, U,. . . , p run from 1 to 3. The Greek 
indices (1, p, . . . , y run from 1 to the number of fermionic degrees of freedom. Moreover, 
an integral from 0 to p h  in the continuum variable T must be understood. We will use 
this convention whenever the integral on T is not explicitly written. 

The quantities A, ”... p ,  B ,  ”.,,,,, C, 0, E,, ”...” and F ,  ”... appearing in the terms (4.6)- 
(4.1 1)  are constructed following a similar prescription to that used in [8]. 

To obtain the Feynman rules we proceed in the usual manner [ 161. The propagators 
are given by the bilinear (harmonic) components of the action and the remaining 
anharmonic pieces are represented by vertices. 
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The function @(U, U )  has the bilinear component plus anharmonic terms. To obtain 
( 0 )  

the propagator of the bosonic field we must take into account the bilinear part, i.e. 

( 0 )  
@,,(U, U )  =fR,u'u'+ ~ * u ' u i + ~ S ' u j u j .  (4.12) 

11)- 
On the other hand, the function @ ,(U, U) can be expanded as follows: 

( 1 )  
@",(U, U)= C",+D",,u'+EYBIuj+. . . . (4.13) 

To obtain the fermionic field propagator we consider only the first term of the 
expansion (4.13), which leads us to the term ctC",5P in the action, bilinear in the 
fermionic field. Thus, the complete bilinear part SA of the expression (4.2) for 
the action takes the form 

SXu, 0, A, 5, 5'. 7, 7+) 

+Sqq:71,+:(f;i" -C'c)+6LC",gB) d r  (4.14) 

which by using definition (4.5) can be written in a more compact form: 

SA =fX'(i)[G-l(i, j ) ] * J " ( j ) +  7:S"q, +I(g'i" - l'tm) + 5'CYa5'. 

is given by 

(4.15) 

The matrix G-' appearing in equation (4.15) and whose elements are [G-'(i ,  j ) ] , "  

(4.!5) 

(4.17) 

(4.18) 

(4.19) 

and 

&,(.)=(My a:+D,,')-'. (4.20) 

The matrix D whose elements are defined in equation (4.18) is the dynamical matrix 
of the shell model. The quantity g defined in equation (4.20) is the free phonon 
.----.-"- A..c-..A :- r o i  

Looking at the expression (4.15) we see that there are three propagators associated 
with the fields X', 7 and 5. The first and the second terms on the right-hand side of 
equation (4.15) define the propagators [G(i, j ) ] + "  and ( S I ) , ,  for the fields X' and 7, 
respectively. These two propagators are equal to those given in 181. The last two terms 

p " & " l ' L u L  UCllllCiU 111 LO,. 
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in equation (4.15) allow us to write the quantity 

A Greco and 0 Zandron 

%mp=(i80a a,+C",) - '  (4.21) 

which is the well known expression for the fermionic field propagator [14]. 
In summary, the Feynman rules for a general interacting potential are: 
(i) Propagators. We associate with the propagator G,.,,(i,j) a line connecting the 

two points i and j: 

1 i 

" G , J i , j )  0 

We associate with the propagator W p  a dashed line connecting two generic points 
a and p (i.e. sites, orbitals): 

___________.__. 0 

CL gmP 5 

We associate with the propagator Si' a wavy line connecting the two points i 
and j: 

i 1 
w s-1 

(ii) Vertices. The generic vertices (of n legs X*(i)) are represented by 

The generic vertices (of 2m legs 5) are represented by 
.. 
Y --, 

-. .. .. ., 
_* -->---- I -..-._..._____ 

Y 
( -1)C(a ,P , . . . .V)  

>,/ 

,,@ 
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, Y )  

Y *. 
The generic vertices (of n legs X r ( i )  and 2m legs 6 )  are represented by 

D k  \ 

1 

(iii) A minus sign must be added to each closed loop built up to 6 and 7 fields, 

(iv) Each diagram must be multiplied by the corresponding topological factor. 
(v) The summation over all internal indices, both Greek and italic characters, must 

be carried out. 
(vi) The external legs can take only the value /L = 1 corresponding to the first 

component of the field X’. 
Finally, as in the many-body theory [ 171, the sum ofthe vacuum-connected diagrams 

allows us to compute up to a given order the partition function Z and therefore 
thermodynamical properties can be obtained. 

owing to its Grassmannian character. 

5. The connection of the ESM with the Frohlich Hamiltonian 

It is interesting to see in what case our model can be confronted with the Frohlich 
Hamiltonian. and also in which cases the essential differences are found. To this 
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purpose we must consider the expansions (4.12) and (4.13), the latter up to first order 
in the fields U and U. Therefore, under these conditions the general interacting potential 
(4.4) remains 

A Greco and 0 Zandron 

@(U, U, 5, 5')=fRp'u '+ T , ~ ~ ' ~ ; + ~ S ' V ~ U ; + ~ ' C " ~ ~ ~ + ~ ~ B ~ ~ ~ U ~ ~ ~ + ~ ~ D ~ ~ V ~ ~ ~ .  (5.1) 
For the interacting potential (5.1) the adiabatic condition is written as 

As equation (5.2) is linear in the v-variable, it can be solved for U and replaced in 
equation (S.l), thus we obtain 

@(U, e, 5') =f[R,, - ~'(S-')fkTk,]U'U' + [Lc"&P + c'[B",, - D " p ' ( S ~ ' ) , , T k ] ~ ' C P  

(5.3) - 1 5 ' ~ "  2 p k 5 P (s-')kic;Dydc'. 

Taking D = 0 in equation (5.3), the resulting expression for the interacting potential 
reduces to that used in the Frohlich model. This situation implies that the interaction 
between the electrons and the shell displacements is not taken into account, i.e. the 
interaction between electrons and the electronic deformability of atoms is neglected. 
As we can see from equation (5.3), for D different from zero, two new terms are present 
in the potential. One of these is a Frohlich-type electron-phonon interaction term. The 
other term gives rise to electron-electron interaction. Thus, in our model it is shown 
how the inclusion of interactions between electrons and shell displacements gives rise 
to effective electron-phonon and electron-electron interactions. 

Finally, we remark that the attainment of the effective potential (5.3) was possible 
because the adiabatic condition (2.26) is linear in the variable U. For more general 
cases in which the adiabatic condition is not linear in U, it is not possible to obtain 
U = v ( u )  explicitly. It is for these cases that the perturbative method developed in 
section 4. takes its full relevance. 

6. Some possible applications of the ESM 

As has been already pointed out, the ESM contains explicitly the interaction between 
mobile electrons and electronic degrees of freedom corresponding to deformabilities 
of ionic electron clouds. Therefore, the usefulness of the E>M should be apparent in 
cases where these interactions are relevant and cannot be appropriately incorporated 
in the Frohlich Hamiltonian. 

At present we have envisaged several possible applications of the ESM. Among 
them we mention the following: 

(i) It is well known that intermediate valence compounds such as SmS, present 
pronounced anomalies in the phonon dispersion curves [ l R ] .  Several such anomalies 
can be satisfactorily explained by means of a breathing shell model [19],  or a damped 
breathing shell model [20]. 

In a breathing shell model, variations of ionic radius of the intermediate valence 
ions are simulated by using a variable shell radius as a degree of freedom. A damping 
term accounts for the strong coupling between f and band electrons. 

The ESM can also be used for the case in which the shell coordinate is a breathing 
one. Thus, we think that the presence of electron-shell interaction terms in the ESM 
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can more naturally account for such anomalies than the ad hoc introduction of an 
energy dispersion mechanism. 

(ii) The inelastic neutron scattering in La,CuO, shows a non-phononic extra branch 
[21]. In the framework of a nonlinear breathing shell model with a double-well 
core-shell interaction it has been recently shown that the extra excitation is due to 
valence fluctuations of the copper ions [22]. 

On the other hand it has been observed that the anomalous excitation is the only 
one significantly affected hy the injection of carriers through doping [23]. !n these 
conditions we can expect the dressing of the double-well interaction, owing to the 
interaction of the shell with carriers, thus leading to renormalization of the extra branch. 

(iii) Another important problem was considered recently by Overhauser [24], who 
has shown how the transverse collective shell vibration mechanism might contribute 
significantly to the quest for a high-Tc superconductor. The ESM could also be useful 
in the examination of this problem. 

It is well known that starting from the usual electron-phonon interaction theory, 
the phononic degrees of freedom can be eliminated by means of a unitary transformation 
[25].  Thus an effective Hamiltonian where the electrons interact attractively can be 
found. This concept leads to conventional low-temperature superconductivity. 

Now, looking at the expression (5.3) for the potential we see that the first three 
terms on the right-hand side are of the same type as those appearing in the usual 
electron-phonon interaction theory. Therefore, these terms, once the degree of freedom 
of the phonons are eliminated, will give an attractive electron-electron interaction. 
The last term appearing in equation (5.3) gives rise to an additional attractive interaction 
between electrons, which reinforces the interaction arising from the first three terms. 
As Tc depends significantly on attractive electron-electron interaction, we can expect 
that the presence of this term in the potential (5.3) yields a higher allowable Tc content. 
Investigations in this direction are under consideration. 

7. Conclusions 

In this paper we have presented an ESM in which, besides the interaction between 
electrons and rigid ion vibrations, we have considered the interaction of electrons and 
ionic shell deformations. To simulate this effect in the shell model we allow for the 
interaction of cores and shells with electronic degrees of freedom. 

Since the shell model is a constrained Hamiltonian system, the electronic degrees 
of freedom cannot be incorporated at a quantum level in a simple way, as is done in 
the Froniicn moaei. i n u s ,  we nave constructed our model by incorporating tnese 
degrees of freedom at a classical level as Grassmann variables. We have analysed the 
classical dynamics of the model and later on its quantization via Dirac brackets was 
carried out. The non-trivial commutation relations (3.12) and (3.13) reveal the difficulty 
for the quantum treatment of the model. 

Subsequently, by starting with the path integral representation of the model partition 

several properties in solid state physics at finite temperature. The use of the perturbative 
method is essential in the case in which the presence of anharmonic coupling in the 
interaction potential @ does not allow the use of the adiabatic condition to solve for 
the shell coordinate U. 

funciion, a p,%fiutbaiive method was constructe;, This method is use;u; io rvaiuaie 
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Moreover, for a particular expression of the interaction potential we can recover 
the Frohlich model. When the shell coordinate is removed, terms of the form f u t  
which reinforce the Frohlich ones appear. Also, electron-electron interaction terms 
are present in this simplest case. 

Finally, some possible applications of our formalism were highlighted. 
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